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Introduction 

Gisbert Schneider, a full professor at ETH Zürich, holding the Chair for Computer-Assisted Drug Design, 

received the 2018 Herman Skolnik Award for his seminal contributions to de novo design of bioactive 

compounds, and the application of these innovative design concepts in both academia and industry. He 

is recognized as being a pioneer in the integration of machine-learning methods into practical medicinal 

chemistry, and for his coining the phrases “scaffold-hopping” and “frequent hitter”. A summary of his 

achievements has been published in the Chemical Information Bulletin. Gisbert was invited to present an 

award symposium at the Fall 2018 ACS National Meeting in Boston, MA. There were 10 speakers in 

addition to Gisbert himself: 
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Molecular Recognition Studies to Advance Structure-Based Drug Design 

François Diederich of ETH Zurich was the first speaker. His team pursues a 

multidimensional approach toward deciphering and quantifying weak 

intermolecular interactions in chemical and biological systems. Experimental 

study in this research involves the investigation of protein-ligand interactions, 

synthetic host-guest complexation, and dynamic processes in designed 

unimolecular model systems, such as molecular torsion balances. It is 

complemented by computational analysis and exhaustive database mining in 

the Cambridge Structural Database and the Protein Data Bank (PDB). The 

findings from this comprehensive investigation greatly aid structure-based 

drug design. 

The first part of François’ talk concerned halogen-bonded and chalcogen-bonded supramolecular 

capsules. Rigorous geometrical requirements for halogen bonding (XB) have been established by both 

theory1,2 and experiment.3-8 The size of the σ-hole on iodine increases with decreasing hybridization 

state of the carbon atom of the XB donor. In parallel, the electronegative area decreases from C(sp3) to 

C(sp2), and changes to an electroneutral surface potential for C(sp). XB strength also increases if X is on 

electron-deficient heterocycles or fluoroarenes.9 Halogen bonding between (iodoethynyl)benzene 

donors and quinuclidine in benzene affords Gibbs binding free energies (ΔG, 298 K) between -1.1 and -

2.4 kcal/mol. The enthalpic driving force ΔH is compensated by an unfavorable entropic term TΔS (due 

to the geometric constraints for XB). 

Multidentate halogen bonding involving hydrogen bonding,10 metal coordination,11 and ion pair 

interactions12 has been reported. More recently, Dumele et al. have highlighted the formation of 

supramolecular capsules based solely on halogen bonding interactions13 and have published details of 

their host-guest binding properties in solution. François showed some single XB hemispheres highly 

preorganized by four alcohol molecules bridging benzimidazole walls by hydrogen bonding: 



 

NMR binding data for the F, Cl, Br, and I cavitands as the XB donor showed association constants (Ka) of 

up to 5370 Μ-1(ΔG283 K=-4.85 kcal mol-1, for I), even in XB-competitive solvent, such as deuterated 

benzene, acetone, and methanol (70:30:1) at 283 K, where comparable monodentate model systems 

show no association. The thermodynamic profile showed that capsule formation was enthalpically 

driven.13 The geometry of the highly organized capsules is shown by an X-ray crystal structure14 which 

features the assembly of two XB hemispheres, geometrically rigidified by H-bonding to eight methanol 

molecules, and encapsulation of two benzene guests. 

 



To enhance capsular association strength, tuning the XB donor is more efficient than tuning the XB 

acceptor, due to desolvation penalties in protic solvents, as shown for a tetraquinuclidine XB acceptor 

hemisphere: 

 

Desolvation of strong XB acceptors leads to “slow exchange” on the NMR timescale. The X-ray crystal 

structure in this case reveals a 10-component assembly: 

 

The second part of François’ talk concerned cycloalkane and cycloalkanol binding in an enantiopure cage 

compound. 1,3-Diethynylallenes (DEAs) are chiral building blocks with exceptional chiroptical 

properties.15,16 In work by Gropp et al.,17 four enantiopure DEAs with OH termini were attached to the 

rim of a resorcin[4]arene cavitand. Alleno-acetylenic cage (AAC) receptors are soluble in polar and 

apolar solvents, thermally and optically stable, and easy to synthesize. The lean, all-carbon backbones of 

the four alleno-acetylene walls shape a sizeable cavity: 



 

The system undergoes conformational switching between a cage form, closed by a circular H-bonding 

array: 

 

and an open form, with the tertiary alcohol groups reaching outwards. The cage form is predominant in 

apolar solvents, and the open conformation in small, polar solvents. Complete chiral resolution of (±)-

trans-1,2-dimethylcyclohexane was found in the X-ray structures, with (P)4-AAC exclusively bound to the 

(R,R)-guest and (M)4-AAC to the (S,S)-guest. 

 



The directionality of the circular H-bonding array is imposed by the absolute configuration of the alleno-

acetylenic arms. 

The crystals were grown in a protocol akin to that of Inokuma et al.18 that does not require the 

crystallization of the sample: crystals of porous complexes are soaked in a solution of the target, such 

that the complexes can absorb the target molecules, and crystallographic analysis detects the absorbed 

guest structure along with the host framework. Occupancy was usually 100%. (R,R)- and (S,S)-trans-1,2-

dimethylcyclohexane bind in the diaxial conformation with a remarkably small torsion angle. The diaxial 

conformation is the higher energy conformation.19 

The dihedral angles ϑa,a (X-C(1)-C(2)-X/H) of the axial and diaxial conformers deviate substantially from 

180°, down to 144°, accompanied by strong flattening of the ring dihedral angles. Theoretical 

calculations optimizing the structure of the isolated guest molecules20 demonstrate that the 

noncovalent interactions with the host hardly affect the dihedral angles, validating that the host is an 

ideal means to study the elusive axial/diaxial conformers. Moving from trans-1,2-dimethylcyclohexane 

to trans-1,2-dihalocyclohexane results in enhanced diaxial binding since 1,3-interactions are less 

important. This work20 also showed that (±)-trans-1,2-dihalocyclohexanes (X = Cl, Br) engage in 

significant halogen bonding interactions C-X···||| (acetylene) with the hosts. X-ray co-crystal structures 

of AACs further allowed for a detailed investigation, both experimental and theoretical, on the interplay 

between space occupancy, guest conformation, and chiral recognition based purely on dispersion 

forces, and weak C-X···π (X = Cl, Br, I) and C-X···||| (acetylene) contacts (X = Cl, Br). A review21 has been 

published recently. 

The final part of François’ talk concerned water solvation of new carbohydrate-conjugated ligands at the 

active site of tRNA-guanine transglycosylase (TGT), which was investigated in collaboration with Prof. 

Gerhard Klebe at the University of Marburg. The intestinal disease shigellosis caused by Shigella bacteria 

affects over 120 million people annually. There is an urgent demand for new drugs as resistance against 

common antibiotics emerges. Bacterial tRNA-guanine transglycosylase (TGT) is a druggable target and 

controls the pathogenicity of Shigella flexneri. TGT recognizes tRNA only as a homodimer22,23 and 

performs full nucleobase exchange at the wobble position G34. A posttranslational tRNA modification 

from guanine to queuine (Q) is introduced in the wobble position in the anticodon of tRNA of all 

organisms (except yeast and archaebacteria), coding for the amino acids Asn, Asp, His, and Tyr. 

Eukaryotes need Q as nutrient but procaryote TGT introduces 7-aminomethyl-7-deazaguanine (PreQ1) 

instead of Q. If TGT is blocked, bacteria become apathogenic since the translation of the key virulence 

factor virF is blocked.24-26 

Prokaryotic TGT catalyzes replacement of guanine by PreQ1 at the wobble position of four specific 

tRNAs. The crystal structure of an intermediate has unexpectedly revealed that RNA is tethered to TGT 

through the side chain of Asp280. Thus Asp280, instead of the previously proposed Asp102, acts as the 

nucleophile for the reaction.23 The crystal structure of the active site in Zymomonas mobilis TGT bound 

to tRNA after base exchange (PDB code 1Q2S) has been published.23 

lin-Benzoguanines are strong binders at the base exchange site,27 for example: 



 

A well conserved five-water cluster is located in the ribose 34 pocket and solvates Asn70 and Asp280. 

Free energy calculations28 show that only two of these water molecules can be replaced without 

penalty. François showed an X-ray structure, PDB code 2Z7K: 

 

Movsisyan et al.29 have reported the synthesis of sugar-functionalized lin-benzoguanines addressing the 

ribose-33 pocket of TGT from Zymomonas mobilis. Ligand binding was analyzed by isothermal titration 

calorimetry (ITC) and X-ray crystallography. Pocket occupancy was optimized by variation of size and 

protective groups of the sugars. In the following compound: 

 

the ribose moiety is too small to fill the ribose-33 pocket properly and adopts multiple conformations. 

This is in agreement with ITC: a lower gain in ∆Ho is compensated by reduced entropic loss T∆So. In 



another case (below), a [5 + 5 + 4] tricyclic water cluster is clearly solved. Together with six other 

conserved waters W10 to W15, the protein in the complex is efficiently solvated. There are no direct H-

bonding contacts from the water cluster to the ligand. 

 

In the case of a larger fructose bisacetonide (below), the tricyclic water cluster is completely absent. Its 

formation is prevented by the terminal fructose acetonide. Leu283 moves toward the ligand and 

establishes a dispersive contact (d(C...C) = 3.8 Å). The ligand is too large and Tyr108 also moves. 

 

The ordered [5+5+4] water cluster in other complexes is formed between the sugar and protein 

hydrophobic surfaces to complete the optimal space filling of the 33-pocket. The situation is 



dramatically different for the complex above, where the solvent accessible surfaces of ligand and 

protein merge at the place where the tricyclic cluster is found in the other complexes. 

Acetonide-protected ribo and psicofuranosyl derivatives are highly potent, benefiting from structural 

rigidity, good solubility and metabolic stability. The authors concluded that sugar acetonides have a 

significant, but not yet broadly recognized, value in drug development. François’ team continues to 

work30 on the sugar-type inhibitors of the TGT homodimer. 

Gisbert had asked all the speakers to conclude with a statement about the challenges they faced. 

François said that his own desire was to learn about the energetics of the ordered water clusters 

solvating protein-ligand complexes. How much do such stable clusters contribute to the overall Gibbs 

free energy? What effect has the replacement of individual water molecules in such clusters by a polar 

ligand substituent? What are the thermodynamic quantities (∆H and T∆S) for these water cluster 

formations? Is desolvation of low logD substrates (slow kon) a general principle to achieve higher 

residency half-lives on target (slow koff) of drugs? 

Computer-aided discovery of enzyme inhibitors 

William (“Bill”) Jorgensen of Yale University started by describing the basics 

of binding. Stronger binding of a ligand to an enzyme leads to greater 

potency of the ligand as a potential drug. The Gibbs free energy of binding, 

ΔGb  = -RT ln Ka = RT ln Kd. A Kd  of 10-9 M arises from ΔGb
 = -12.4 kcal/mol, 

and the molecule is referred to as a “1-nM binder or inhibitor”. A Kd  of 10-9 

M arises from ΔGb
 = -12.4 kcal/mol, and the molecule is referred to as a “1 

nM binder or inhibitor”. A Kd of 10-6 M arises from ΔGb
 =  -8.3 kcal/mol, and 

the molecule is referred to as a1 μM binder or inhibitor”. Screening hits are 

very rarely better than low-µM.31 Lead optimization is needed to evolve 

them to low nM, to impart druglike properties, and to avoid toxicity and 

other liabilities. Lead identification and optimization can be automated: 



 

Bill has both computation and synthesis groups at Yale and he has collaborators at Yale who can carry 

out assays. X-ray crystallography is also done in-house.  Underlying all the modeling is the 

representation of the inter and intramolecular energetics, with Optimized Potentials for Liquid 

Simulations-All-Atom (OPLS-AA) force fields, and the software used is Biochemical and Organic 

Simulation System (BOSS), Biochemical and Organic Model Builder (BOMB), and MCPRO. Derived from 

BOSS, MCPRO32 performs Monte Carlo statistical mechanics simulations of peptides, proteins, and 

nucleic acids in solution. For de novo lead generation, the BOMB program builds combinatorial libraries 

in a protein binding site using a selected core and substituents. The OPLS-AA force field33 is a well-

proven model which has been continually tested and improved.34-38 Bill’s group offers a web-based 

service, LigParGen, that provides force field parameters for organic molecules or ligands. 

Bill presented some applications of his group’s software, centered on the design of inhibitors targeting 

macrophage migration inhibitory factor (MIF), and human immunodeficiency virus HIV-1 reverse 

transcriptase (HIV-1 RT). MIF is a cytokine released by T-cells and macrophages. It is also a keto-enol 

tautomerase. The MIF signaling cascade is initiated by binding to its receptor, CD74. MIF is a target for 

development of anti-inflammatory39 and anti-cancer agents.40 Strategies including in silico modeling, 

virtual screening, high-throughput screening, and screening of anti-inflammatory natural products have 

led to a large and diverse catalog of MIF inhibitors, as well as some understanding of structure-activity 

relationships.40 MIF is also now of interest in neurological disorders.41 

Bill’s group prefers to measure Ki, the enzyme-inhibitor binding constant, rather than IC50, which varies 

with substrate concentration and Km. Ki is determined by a p-hydroxyphenylpyruvate (HPP) tautomerase 

assay. In de novo design BOMB grows analogues from a core. It adds 1-4 substituents in five possible 

topologies; generates all conformations in the binding site; optimizes each with the host partly flexible; 

http://zarbi.chem.yale.edu/ligpargen/


and scores and outputs the best as a PDB structure or Z-matrix. Bill’s team has reported on design, 

synthesis and protein crystallography of biaryltriazoles42 as inhibitors of MIF. Compounds with Ki from 37 

to 0.65 µM were synthesized, and a crystal structure 4WRB was obtained showing a binding site with a 

possible cation-π interaction with Lys32. Additional BOMB modeling encouraged pursuit of 5- and 8-

phenoxyquinolinyl analogues (C8 example shown below). Activity was further enhanced by addition of a 

fluorine atom. The compound below had Ki = 0.014 µM (optimized from a C5 derivative with Ki = 3.0 

µM). This compound is much more potent than others in the literature. Bill showed the related PDB 

structure 5HVS. 

 

Development and use of fluorescence polarization assays using a fluorescein-labeled tracer provided 

direct binding data43 and yielded Kds in agreement with Ki. (This assay has also been used in Janus kinase 

2 (JAK2 kinase)44 studies.) Striking combinations of protein-ligand hydrogen bonding, aryl-aryl, and 

cation-π interactions are responsible for the high affinities. A new chemical series was then designed 

using this knowledge to yield two more strong MIF inhibitors. Coordination of the ammonium group of 

Lys32 in the active site using a 1,7-naphthyridin-8-one instead of a quinoline was investigated.45 DFT 

calculations indicated potential benefits for an added hydrogen bond with the lactam carbonyl group, 

while free energy perturbation (FEP) results were neutral. Consistent with the FEP results, the 

naphthyridinones were found to have similar potency to the related quinolines in spite of the additional 

protein-ligand hydrogen bond. 
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Phenols often show low bioavailability owing to glucuronidation and sulfation, although 7% of all 

approved oral drugs contain a phenol. Most of the potent MIF tautomerase inhibitors incorporated a 

phenol, which hydrogen-bonds to Asn97 in the active site. Results of structure-based and computer-

aided design, starting from a 113 μM docking hit, have provided substituted pyrazoles as phenol 

alternatives46 with potencies of 60-70 nM. Crystal structures (6CBG, 6CBH) of complexes of MIF with the 

pyrazoles highlight the contributions of hydrogen bonding with Lys32 and Asn97, and aryl-aryl 

interactions with Tyr36, Tyr95, and Phe113 to the binding. A systematic study of aqueous solubility47 has 

been carried out. Currently, 14 of the Yale compounds are being tested by Charles River Laboratories for 

their ability to inhibit MIF-induced proliferation of glioma cells.48 

Bill next turned to the topic of free energy perturbation (FEP)49 which he has worked on since 1980. 

Since 2005 he has applied it to lead optimization. The thermodynamic cycle for relative free energies of 

binding is as follows. 

 

 

FEP calculations are performed for the protein-ligand complex in water.  Extensive Monte Carlo 

sampling is carried out for the protein, ligand, and water at 25 ⁰C. The results identify modifications that 

should increase binding affinity. The software used is MCPRO.32 During the 1980s, advances in the ability 

to perform computer simulations, and to calculate free energy changes, led to the expectation that such 

methodologies would soon show great utility for guiding molecular design. The 1980s also saw the rise 

of high-throughput screening and combinatorial chemistry, along with complementary computational 

methods for de novo design and virtual screening including docking. All these technologies appeared 

poised to deliver leads for any target, but realization of the expectations required significant additional 

effort and time. It was important to test if FEP could deliver in a prospective manner. Striking success 

has now been achieved for computer-aided drug lead generation and optimization.50 FEP for drug lead 

optimization51 is now accepted, with room for improvements: exciting challenges remain. 

One application is optimizing the substituents on the phenol ring42,43 of the MIF inhibitors described 

above, where the crystal structures confirm the position of F contacting Met101. Also a “heterocycle 

scan” was performed using FEP with Desmond51 OPLS2.1. Experimentally, nothing has been found better 

than 1,2,3-triazole. A tetrazole and a thiadiazole are 1-5 µM inhibitors. 

Most of the Yale FEP work has been on HIV-1 RT. Bill has reviewed52 10 years of efforts in his laboratory 

to discover anti-HIV agents. The work has focused on computer-aided design and synthesis of non-



nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs), with collaborative efforts on biological 

assaying and protein crystallography. MT-2 assays were carried out in Karen Anderson’s laboratory. X-

ray crystallography was carried out in Eddy Arnold’s laboratory.53 Monte Carlo and FEP simulations have 

often been executed to identify the most promising choices for heterocycles, linking groups, and 

substituents on rings.54,55 Numerous design issues were successfully addressed including the need for 

potency against a wide range of viral variants, good aqueous solubility, and avoidance of electrophilic 

substructures. Computational methods including docking, de novo design, and FEP calculations made 

essential contributions. The result is novel NNRTIs with picomolar and low-nanomolar activities against 

wild-type HIV-1, and key variants that also show much improved solubility and lower cytotoxicity than 

recently approved drugs in the class.  

Members of the catechol diether class are highly potent NNRTIs. Many NNRTIs, such as rilpivirine, bear a 

cyanovinylphenyl (CVP) group, an uncommon substructure in drugs that gives reactivity concerns. Bill’s 

team used computer simulations to design bicyclic replacements56 for the CVP group. FEP results for 18 

alternatives were obtained and 30 new compounds were synthesized, including three with EC50 activity 

values of 10nM, 7nM and 0.38 nM. The team has also reported potent inhibitors active against HIV-1 RT 

with K101P, a mutation conferring rilpivirine resistance.57 The results for K101P are explained by crystal 

structures: the Yale compounds do not make an H-bond with a K101 carbonyl. 

 

The clinical benefits of NNRTIs are hindered by their unsatisfactory pharmacokinetic (PK) properties, and 

the rapid development of drug-resistant variants. Bill’s team used computational and structure-guided 

design to develop two next-generation NNRTI catechol diether drug candidates, and published PK and 

humanized mouse studies.58,59 One candidate is JLJ636: 



 

Resistance associated with the Tyr181Cys mutation in HIV-1 RT has been a key roadblock in the 

discovery of NNRTIs. The team at Yale has reported covalent inhibitors of Tyr181Cys RT that can 

completely knock out activity of the resistant mutant and of the particularly challenging 

Lys103Asn/Tyr181Cys variant.59 Conclusive evidence for the covalent modification of Cys181 was 

provided from enzyme inhibition kinetics, mass spectrometry, protein crystallography, and antiviral 

activity in infected human T-cell assays. 

Massive computational docking experiments to identify noble gases target for new “atomic 

drugs” 

Dave Winkler of the Monash Institute of Pharmaceutical Sciences and La 

Trobe University, Australia presented research carried out in collaboration 

with colleagues at the Commonwealth Scientific and Industrial Research 

Organization (CSIRO), Australia, and Air Liquide Santé in France. All chemists 

know that the noble gases are chemically inert, except to the most extreme 

reaction conditions. Paradoxically, several of these gases exhibit a wide range 

of fascinating biological effects, some of which have been demonstrated in 

vivo and in the clinic. Their most important physical properties are 

lipophilicity, size, polarizability, and arguably, their rarity. As they are such 

simple entities, modeling their properties and biological interactions is 

considerably more tractable than for small drugs where conformation, hydrogen bonding, charge, π 

interactions etc. are often the dominant interactions. 

Dave and his colleagues have conducted an exhaustive review60 of the literature on medical and 

pharmacological properties of noble gases. About 400 papers were studied, most of them published 

since 1980. The review was necessary for the authors to understand current experimentally verified 

interactions with proteins at atomic level, and to infer likely pharmacological effects of noble gases 

binding to human proteins from computational screening.  

There is a strong correlation of anesthesia and other biological effects with solubility. Many potentially 

clinically useful properties are known or may emerge. It is impractical to carry out experiments to assess 

the effect of noble gases on every possible protein target; simulation predicts xenon binding sites and is 



the only feasible way to explore noble gas binding. Novel delivery systems are required to reduce cost 

and allow lighter noble gases to be used clinically. 

Noble gases have many biochemical effects at the atomic level. Xenon affects a range of receptors 

involved in cell signaling; the N-methyl-D-aspartate receptor (NMDA receptor) is the receptor best 

studied experimentally. Two of the other molecular targets for xenon that have been identified61 include 

the two-pore-domain potassium channel TREK-1, and the adenosine triphosphate-sensitive potassium 

channel (K(ATP)), but which of these targets are relevant to acute xenon neuroprotection is not clear. 

Pharmacological effects of noble gases on cells, organs, and organisms include anti-apoptotic effects, 

cytoprotection, neuroprotection, analgesia, anticonvulsant effects, anesthesia, and effects on memory 

and addiction. Xenon is an ideal anesthetic. It is 1.5 times more potent than nitrous oxide; offers rapid 

induction and emergence; has low toxicity, and is devoid of teratogenicity. It protects neural cells from 

ischemic injury, and has many other clinical advantages. Its unique combination of analgesia, hypnosis, 

and lack of hemodynamic depression makes it a very attractive choice for patients. 

Interestingly, NMDA receptors have recently been shown to play a major role in alcohol craving and 

relapse, and other addictions. A study of the effect of xenon on alcohol-seeking and relapse-like drinking 

behavior in rats62 showed that even a brief exposure to xenon can induce an anti-reward effect lasting 

several days. Xenon may also usefully interfere with craving in human alcoholics, and potentially in other 

addictive settings.  

Dave’s team aimed to discover new, useful therapeutic applications for noble gases. Given the simplicity 

of the ligands, and the steady improvement of computational docking algorithms, it is feasible to 

conduct computational studies on a large number of proteins for their likely affinity for the noble gases. 

Dave hypothesized60 that the results of simulations can identify which proteins bind the gases most 

tightly, and where the gases bind relative to ligand or cofactor binding sites, thus allowing proteins to be 

prioritized in terms of potential medical interest. Interpreting and visualizing data allows inferences of 

pharmacological pathways affected by noble gases. Confirmatory experiments will be run on the top 

candidates. Efficient delivery of noble gases by nanoparticles, to overcome issues with cost (for xenon), 

and the need for hyperbaric administration (for noble gases other than xenon and perhaps krypton), 

would greatly increase the added value. 

The aims of the in silico screen were: 

 to identify whether the xenon binding is in or very near the endogenous ligand binding pocket 

and could block ligand binding 

 to quantify how tightly xenon binds, and how many xenon atoms the site will accommodate 

 to identify sites with very good xenon binding where the binding may also be favorable for the 

smaller noble gases 

 to identify the structural rules for noble gas binding sites 

 to carry out a detailed analysis of interesting results using molecular dynamics (MD) 

 to validate the predictions in laboratory experiments 



 to lead into experiments on efficient drug delivery. 

An essential requirement for such a massive computational study is to validate the methods. If the 

methods can reliably locate the known experimental binding positions of noble gases in diverse 

proteins, a much larger computational study is more likely to yield useful new knowledge. To this end, a 

diverse subset of about 60 proteins in the PDB containing at least one xenon atom and having <50% 

sequence identity was analyzed to study how xenon binds to the protein, and how close xenon 

approaches site residues. In most of the cases, the closest approach is 3.5 – 4.5 Å. Activity originates 

from one of two mechanisms: xenon directly binds to the binding site, or xenon binds elsewhere causing 

an expansion in the cavity volume, which then presumably modifies the active site conformations or 

flexibility. 

For docking, Dave used the AutoDock 4 package from the Scripps Institute. Liu et al. had previously 

found good agreement63 between the xenon binding sites and energies for the NMDA receptor 

predicted by AutoDock and MD calculations. Force fields and energy cut-offs were fine-tuned by 

identifying all known xenon crystallographic binding sites; Andrew Warden of CSIRO carried out the DFT 

calculations. 

There were 116 protein structures with xenon ligands in the validation set, 12 with krypton, and 4 with 

argon. Automated protein preparation was essential if the results were to be valid and useful: this was 

one of the most time-consuming parts of the project. The docking method was validated by quantifying 

how well simulations could predict binding positions in 132 diverse protein X-ray structures containing 

399 xenon and krypton atoms. Dave and his co-workers found excellent agreement64 between 

calculated and experimental binding positions of noble gases: 94% of all crystallographic xenon atoms 

were within 1 xenon van der Waals (vdW) diameter of a predicted binding site, and 97% lay within 2 

vdW diameters; 100 % of crystallographic krypton atoms were within 1 krypton vdW diameter of a 

predicted binding site. Dave gave some examples, for example, porcine elastase (1C1M) with a single 

xenon atom in the structure (left) and T4 lysozyme mutant (1C6A) with two krypton atoms in the 

structure (right): 

 



The PDB contains about 70,000 mammalian protein structures and about 130,000 structures in total. 

There is considerable redundancy in the PDB. Imposing sequence similarity allows redundancy to be 

removed, leaving representative structures for each protein. After these redundancy filters are applied 

the PDB contains 20,000 human protein structures at 100% similarity. Systematically mapping the 

energy of the noble gases at all grid locations (in 0.375 Å steps) in all 130,000 PDB structures is a 

formidable computational task. This task has now been completed and the resulting dataset is freely 

available on the CSIRO website. Dave encourages interested scientists to explore the dataset, perhaps 

by looking at how various noble gases bind to their favorite protein targets. 

The team is now using automated and manual methods to analyze the massive dataset to find proteins 

with the most promising interactions with noble gases, primarily xenon and krypton. For these, they will 

explore the pharmacological effects of hits using the published literature; report on protein structure, 

and function, and known synthetic modulators of the protein’s action, and infer pharmacological effects; 

and design experiments to validate the in silico predictions. 

Proteins of special interest will be given detailed analysis using higher level modeling techniques: 

docking and molecular dynamics. Advanced docking can study in more detail the interactions of noble 

gases with specific sites in proteins, allow the binding partners to be characterized, and allow 

competition with natural ligands to be modeled. Molecular dynamics63 can reveal the time course of 

interactions between noble gases with proteins, the trajectories of gases through proteins, the effect of 

the binding on protein structure, and so on. Delivery systems for noble gases are also important. Britton 

et al.65 have demonstrated that in vivo xenon delivery via echogenic liposomes is neuroprotective. 

Microbubbles are another potential method for therapeutic noble gas delivery. 

Dave concluded, as requested by Gisbert, with a list of grand challenges for molecular design. We need 

better mapping of structures into mathematical objects (deep learning); generative models that can 

predict real molecules with improved properties from models; use of evolutionary algorithms to explore 

more of the vast chemical space; and generation of autonomous systems. 

Progression saturation analysis of analogue series using virtual candidate compounds 

Jürgen Bajorath of the University of Bonn presented new work on lead 

optimization. In optimization, it is difficult to estimate when an analogue series 

might be saturated and synthesis of additional compounds would be unlikely to 

yield further progress. Only a few approaches are currently available to monitor 

series progression, and aid in decision making. Jürgen presented a new 

computational method to assess progression saturation of analogue series by 

comparing existing compounds to virtual candidates. In this method, virtual 

analogues are generated for an existing analogue series, and virtually extended 

series are projected into a chemical reference space. Chemical neighborhoods 

(NBHs) of existing analogues are defined and a dual scoring scheme is applied to 

quantify the saturation of analogue series focusing on neighborhoods. Different saturation categories 

are established on the basis of characteristic scores. 

http://group18.csiro.au/#/about


The NBH of each experimental analogue is defined on the basis of compound distance relationships in 

chemical space. NBH radii are adjusted for score calculations. The raw global saturation score quantifies 

chemical space coverage by existing and virtual analogues. The NBH radius of experimental analogues is 

set to the median of distances between each virtual analogue and its top 1% nearest virtual neighbors. 

The raw local saturation score quantifies the distribution of virtual candidates across the NBHs of active 

analogues. The NBH radius of active analogues is set to the median of pairwise distances between active 

analogues. 

The raw global saturation score, S, is given by  

 

where V = set of virtual analogues, and vexptl = set of virtual analogues in NBHs of experimental 

analogues. In the following example the raw global saturation score is 8/15. 

 

The raw local saturation score, A, is given by 

 
1


activev

A
A  

where A = set of active analogues, and vactive = set of virtual analogues in NBHs of active analogues. In the 

following example the raw local saturation score is 4/7. 

 



The global saturation score increases with increasing numbers of virtual candidates falling into NBHs of 

experimental analogues, indicating extensive global chemical space coverage. The local saturation score 

increases with decreasing numbers of virtual candidates in NBHs of active analogues (“active NBHs”). 

For ensembles of series, raw global and local scores are converted into Z-scores.  

A dual scoring scheme is obtained by combining global and local saturation scores (global/local). 

Combined scores define different saturation categories: 

 

Early-stage series are categorized low/high: there is low chemical space coverage with only a few virtual 

candidates in active NBHs. Mid-stage series are categorized low/low: there is low chemical space 

coverage with many virtual candidates in active NBHs. Late-stage series are categorized high/low: there 

is extensive chemical space coverage with many virtual candidates in active NBHs. Saturated series are 

categorized high/high: there is extensive chemical space coverage with only a few virtual candidates in 

active NBHs. 

Jürgen carried out a proof of the concept. Using an in-house algorithm, 80 analogue series were 

extracted from PubChem Bioassays. A total of 1618 compounds (for 23 targets) had single substitution 

sites, and active and inactive analogues were included. Also, 64 analogue series were extracted from 

ChEMBL. In this case a total of 1422 compounds (for 62 targets) had multiple substitution sites, and only 

active analogues were included. 

The first descriptor set included seven simple and chemically intuitive numerical descriptors: molecular 

weight, number of H-bond acceptors, number of H-bond donors, number of rotatable bonds, logP, 

aqueous solubility, and molecular surface area. The second descriptor set included seven “abstract” 

numerical descriptors (topological and shape indices, complex surface and charge descriptors, and 

synthetic feasibility index) with little correlation. Set one gave a seven-dimensional reference space; set 

one plus set two gave a fourteen-dimensional reference space. 

Analogue series-based (ASB) scaffolds extracted from ChEMBL were enumerated with 13,203 unique R-

groups to generate “diverse” virtual analogues (ASB_VAs): 



 

Series-specific design gave variable numbers of virtual analogues from SAR matrices (SARMs)66, that is, 

“close-in”’ virtual analogues (SARM_VAs): 

 

Jürgen briefly described the SARM methodology66 for structural organization of compound sets. 

Systematic fragmentation of compounds yields matched molecular pairs (MMPs). In a dual 

fragmentation scheme, step 1 (standard fragmentation) gives cores and R-groups, and step 2 (core 

fragmentation) gives core MMPs. A matrix contains a subset of compounds with analogous core 

structures (that only differ at a single site). By design, SARMs are obtained only from series with multiple 

substitution sites. 



 

A matrix is filled with available core structures and R-groups (see below). Large series typically yield 

multiple SARMs. Cells are colored by increasing potency (from red to green below). “Empty” cells 

represent virtual analogues: unexplored (core plus R-group) combinations. These close-in virtual 

analogues form a “chemical space envelope” around compound series. 

 

Jürgen presented his results. There was no detectable correlation between global and local saturation 

scores for the 80 PubChem series: 

 



As regards reference space sensitivity, a comparison of 80 PubChem series in 7- and 14-dimensional 

chemical reference space (ASB_VAs) showed that 63 of 80 series retain their category assignment: 

 

The category distributions of PubChem and ChEMBL series were similar as shown by the 14-dimensional 

ASB_VAs plot below. Both sets are dominated by series with mid-stage character. 

 

Categorization of series is also only moderately influenced by varying analogue design strategy, although 

a small shift from late-stage towards mid-stage series is observed for SARM_VAs compared to ASB_VAs, 

for the ChEMBL series: 



 

Jürgen presented three models for evolving series with more than 100 analogues (evaluated in 

cumulative increments). There was a consistent increase in saturation scores for subsets of increasing 

size, and the saturation level increases from the left to the right: 

 



In summary, Jürgen’s computational progression analysis of analogue series relies on a neighborhood 

concept and a virtual analogue-based scoring scheme. Progression states are categorized on the basis of 

combined global and local saturation scores. For proof-of-concept, large sets of analogue series were 

profiled. Categorization of series is only moderately influenced by varying space representations and 

analogue design strategies. Different saturation characteristics are detected for analogue series 

including the largest publicly available series. In response to Gisbert’s question about grand challenges, 

Jürgen suggested rationalizing compound optimization, and demystifying AI approaches in chemistry 

beyond the hype. 

Novel method proposing chemical structures with a desirable profile of activities based on 

chemical and protein spaces 

Kimito Funatsu of the University of Tokyo, Japan spoke about a new method 

for predicting relationships between compounds and proteins. Computational 

methods to generate models that zoom out from a single protein with a 

focused ligand set to a larger and more comprehensive description of 

compound-protein interactions, and that are valid in prospective experiments, 

are of importance in drug discovery.67 Nevertheless, constructing a simple 

prediction model against one protein does not completely help drug design, 

because detecting chemical structures that act similarly against multiple 

proteins is necessary for preventing side effects of the potential drug. To 

tackle this problem Kimito’s team proposes a new method that visualizes the 

chemical and protein spaces.  

By visualizing chemical descriptor space in 2D (using a self-organizing map or generative topographic 

map) it is possible to determine an activity profile and to decide on target areas. By visualization of 

protein descriptor space, the activity profile of proteins (including an orphan protein) can be 

determined. Kimito’s objectives were simultaneous visualization of chemical space and protein space, 

considering compound-protein interaction, and development of a structure search method. His strategy 

was to expand counterpropagation neural networks (CPNN)68 into a multi-input and single-output 

system. 

CPNN is a supervised learning method combined with a Kohonen neural network. Two maps can be 

created: a chemical map (a profile of chemical descriptors) and an activity map (a profile of activity 

values). In multi-input CPNN (MICPNN) the strategy is to create two maps of chemical space and protein 

space, and to associate activity values to the combination of two coordinates: 



 

The activity profiles of chemical structures for several proteins can then be obtained: 

 

The procedure for drug discovery using MICPNN is to input descriptors of a protein and get the activity 

profile of compounds; to determine grids from the condition of activity value; and to obtain molecular 

descriptors corresponding to the grids. These descriptors can then be used in virtual screening, or in de 

novo design, to get new chemical structures. 

G protein–coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, or 

7TM receptors, are drug targets related to many diseases. A ligand binding site is known. In a case study 

Kimito used the GPCRSARfari dataset in ChEMBL.69 This has 40,000 activity data points (pKi > 4.0) for 

21,272 compounds and 124 proteins in GPCR class A. Kimito used 20,000 as activity pairs for the 

MICPNN learning set, 10,000 as validation pairs for convergence determination, and 10,000 as test pairs 

to examine MICPNN. 

The chemical descriptors were 137 descriptors from Dragon 7.0. The 288 protein descriptors were z-

scores70 of 7TM domain regions obtained from GPCRdb.71,72 The z score is the score vector obtained by 

applying principal component analysis to the physical property value of the amino acid; z3 (up to the 

third principal component) was used in this case study. Kimito presented these results: 



 

Having proposed MICPNN to visualize chemical space and protein space, and developed a chemical 

structure search process, Kimito showed that combination with a structure generation method73 led to 

more effective chemical structure search. The target protein Kimito chose to illustrate structure search 

was histamine receptor H1 (HRH1), a class A GPCR related to diseases such as abnormality of airway 

function and atopic dermatitis.74 HRH1 antagonists are bronchodilators, and anti-allergy and anti-nausea 

drugs. The structure of the human histamine H1 receptor complex with doxepin75 has been published. 

First generation HRH1 antagonists have affinity for muscarinic acetylcholine receptors (CHRM),76 and 

cause anticholinergic effects. So Kimito wanted to find compounds with high activity for HRH1 (pKi > 8) 

and low activity for CHRM1 (pKi < 5). Using these settings, he obtained limited areas on the Kohonen 

maps of HRH1 and CHRM1 when these two maps were overlapped:

 

The nine pairs of descriptor values (and number of substructures) were: 

Mapping accuracy: 

Prediction accuracy: 



 

For testing the ability of the model Funatu used a GPCRSARfari dataset not used in modeling. One 

selected compound77 (below) had predicted HRH1 activity of pKi 8, and predicted CHRM1 activity of pKi 

4.88. 

 

A docking simulation was run for the best 100 compounds, using AutoDock4.2.6,78 and AutoDockTools-

1.5.6,78,79, and protein structures from the PDB. A plot of the binding energies indicated selectivity for 

HRH1: 

 



Kimito showed docking simulations for ChEMBL343024, where the binding energy for HRH1 was -8.08 

kcal mol-1, and for CHRM1 was -6.44 kcal mol-1.  

It is a problem that interpretation of a quantitative structure-activity relationship (QSAR) model is 

dependent on descriptors. Kimito has used a graph convolution neural network in descriptor-

independent QSAR analysis. It is possible to extract and visualize positive and negative features on 

substructure on each structure, and to summarize important substructure profiles for a specific target. 

This idea has been applied to the compound-protein interaction model: it is possible to extract, visualize 

and summarize important pairs of substructure profiles between compound and target. 

Chemography: toward “universal” maps of druglike space 

Alexandre (Sasha) Varnek of the University of Strasbourg, France had the goal 

of making a map encompassing all known compounds and activities in druglike 

chemical space. Oprea and Gottfries80 were the first to use the term 

“chemography” in cheminformatics; Varnek’s team continues to follow the 

theme.  

To go from multidimensional descriptor space to 2D latent space requires 

dimensionality reduction. Sasha uses In Silico Design and Data Analysis (ISIDA) 

descriptors81-83 of which there are several hundred. A great many 

dimensionality reduction methods have been reported but Sasha chose to use 

Generative Topographic Mapping (GTM),84-86 a probabilistic extension of self–organizing maps (SOM).  

GTM relates the latent space with a 2D “rubber sheet” (or manifold) injected into the high-dimensional 

data space. The visualization plot is obtained by projecting the data points onto the manifold and then 

letting the rubber sheet relax to its original form. GTM generates a data probability distribution in both 

initial and latent data spaces. GTM can thus be used not only to visualize the data, but also for structure-

property modeling tasks.86  

Sasha showed a probability density distribution in the latent space. Projection of an object on a GTM is 

described by the probability distribution (“responsibilities”) over the lattice nodes. Using GTM, one can, 

for each molecule, evaluate the probability of finding it in a point on the grid. This probability 

distribution can be used to prepare an “activity landscape” or “class landscape” on a 2D map which, in 

turn, allows the user to make predictions of activities, or the probability that new compounds will be 

active or inactive.87 

A “universal” map is expected to accommodate a variety of known chemotypes; to be able to distinguish 

different activity classes; and to separate actives and inactives within a given activity class. It needs to 

exhibit neighborhood behavior (NB). A given molecule may display several different activities, so several 

different descriptor spaces might be needed to construct the NB-compliant maps. This is equivalent to 

separating objects into different maps according to the color or the shape of the descriptors. 

The choice of descriptors is a vital issue for chemical space construction. Optimal descriptors are 

supposed to be provided by the best GTM-based regression or classification models built on some 



“scoring” dataset(s). The more the activities that are used, the more universal is a map.88 Descriptors 

leading to the largest scores are selected. Sasha showed the modeling workflow for producing universal 

maps: 

 

Frame sets from the ChEMBL database were used: five sets containing from 8,500 to 30,000 

compounds. There were 100 ISIDA descriptor types. The scoring sets were 236 targets, including GPCRs, 

kinases, and nuclear receptors; and more than 30,000 compounds. From the scoring sets, universal 

manifolds were determined, and cycled through 382 validation datasets of over 100, 000 compounds, 

and the scoring sets, in order to find the best universal manifolds. All of the ChEMBL compounds were 

then projected on the manifolds. Eight universal maps described more than 1.5 million compounds and 

618 targets from the ChEMBL database. 

Frame set 
 

Random selected 
compounds for 
manifold construction 

Descriptors 
 

Several dozens of 
different descriptor 
types 

Scoring sets 
 
Compounds and activities 
to select for the best 
descriptor types 

Selected “universal” manifolds 

External validation 
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Genetic algorithm optimization of GTM parameters and frame set 
size 



 

Seven maps correctly predict the classes (active/inactive) for ligands against more than 600 targets: 

 

Universal maps can be applied to virtual screening. In a case study, Sasha’s team virtually screened the 

Directory of Useful Decoys (DUD) using the activity landscape for adenosine receptor A2a. Molecules 

dropping into empty areas are not considered. 

BA = balanced accuracy (defined as the mean of specificity and sensitivity) 

http://dude.docking.org/


 

Sasha presented the results below (79 actives and 28,002 inactives found in DUD). The molecules in 

empty zones (schematically shown by red ellipses) were discarded in virtual screening 

 

A consensus model performed better than its seven, constituent individual models. The number of 

molecules discarded by the GTM applicability domain ranged from 348 to 1643 for the seven maps, but 

Red = active, blue = inactive. There were 1,303 actives in ChEMBL and 3,618 

inactives. 



was zero for a consensus model, showing that a consensus model provides better data coverage than 

the individual models. 

Universal maps can also be used to detect privileged structures. Privileged substructures recur in 

compounds active against a given target, and are associated with biological activity. They are important 

in the design of novel bioactive compounds. The classical approach to detection of privileged 

substructures is scaffold-centric. In the GTM-based approach, structurally related structures are 

extracted from the responsibility distribution. Compounds with similar responsibility vectors are 

expected to be related. In recent work,89 zones of a map preferentially populated by target-specific 

compounds were delineated. This helps to capture common substructures. On the basis of the common 

substructures, compounds were grouped together by GTM. Such privileged structural motifs were 

identified across three major target superfamilies including proteases, kinases, and G protein coupled 

receptors. Three universal maps are needed in order to extract the privileged structural motifs for the 

main classes of antivirals in ChEMBL.87 

In summary, universal maps are able to support predictive models for a broad spectrum of biological 

activities and, thus, they could be used as a pharmacological profiling tool. Several (at least seven) maps 

are needed in order to achieve good performance in separating actives from inactives. Privileged 

substructures (not necessarily scaffolds) can be extracted from universal maps. Other cheminformatics 

applications with universal maps are virtual screening, target prediction, and drug repurposing. 

Finally, Sasha touched briefly on de novo design using a deep learning and GTM combination. This is 

work reported in the master’s thesis of Sasha’s student Boris Sattarov. An autoencoder produces an 

efficient, dense representation of an input object by performing specific compression of learned data. A 

long short-term memory (LSTM) sequence-to-sequence autoencoder can perform SMILES 

reconstruction. An LSTM encoder takes a SMILES string, and produces real numbers (as latent variables) 

from which the LSTM decoder reconstructs the SMILES. A database of SMILES strings can then be used 

as input to the trained encoder, and a GTM built on the latent variables of the autoencoder. Novel 

structures from specific areas of the map are generated by the trained decoder, which produces SMILES 

strings of the novel compounds from latent variables.  

A case study was generation of analogues of A2a inhibitors. De novo structures were generated by 

sampling of GTM zones populated by existing ChEMBL structures. Validation was carried out by docking 

the ligands on the 2YDO PDB X-ray structure using the Sampler For Multiple Protein -Ligand Entities 

(S4MPLE)90 tool. The distribution of the docking scores of the generated structures closely followed that 

of real actives. 

  



 

Artificial Intelligence in drug design 

Much of the afternoon session centered on artificial intelligence (AI). 

Representing five co-authors at Sanofi-Aventis in Germany, Karl-Heinz 

Baringhaus addressed the subject of AI in drug design. A recent review has 

analyzed the relative contributions of each of the steps in the drug discovery 

and development process to overall R&D productivity.91 Karl-Heinz said that 

there are opportunities for AI in all areas of the drug discovery and 

development value chain. It has been estimated that the AI market in 

healthcare will be worth $6.6 billion in 2021. AI is a system for problem 

solving, making automated decisions, perceiving the environment, and taking 

actions. A “strong” AI system has the same capabilities as human thinking and 

reasoning; a “weak” AI system transfers a single human capability to a system (e.g., recognition of texts, 

voice, or images). 

Drug design plays a pivotal role in lead identification and optimization, and AI has a role in this through 

deep learning, in particular for compound classification, de novo design and in silico profiling. For 

example, the majority of adverse drug reactions (ADRs) are dose-dependent, and ADRs can often be 

predicted on the basis of the pharmacology profiles of the candidate compound.92 

The application of AI in particular in the field of ADMET and antitarget modeling was the main focus of 
Karl Heinz’s talk. He started with an overview of some predictive data mining methods: 

 

Many 2D descriptors describing molecular topology have been used, as well as pharmacophore 

fingerprints, and 1D descriptors such as logP. Machine learning algorithms generate knowledge from 

experience: they learn iteratively from data without being explicitly programmed. The models generated 

can be used for prediction of novel instances. Classification methods and quantitative models have been 

developed. Different algorithms include linear regression, decision trees, random forest, support vector 

https://www.accenture.com/us-en/insight-artificial-intelligence-healthcare


machine, etc. An example is building (Q)SAR with Cubist, in which both a decision tree and regression 

are combined. 

Different QSAR models have different validity domains (e.g., hERG or CYP450). For a domain to be valid, 

predicted compounds must be similar to training molecules, and the descriptor range of predicted 

compounds must relate to the training set molecules. Karl-Heinz and his colleagues have reported some 

CYP450 2D-QSAR models, among others.93 

Deep learning is a subsection of machine learning. It has been particularly effective due to the use of 

neural networks. It is based on analysis of large volumes of data (big data). 

 

A single-task, deep neural net (DNN), aims to generate a model for just one activity. Molecules are 

described by a set of descriptors which are used as input for the network. Most often, fully connected 

and sequential deep neural nets with several hidden layers are applied for model building. Multitask 

deep networks have yet to be widely deployed in the pharmaceutical industry but recent work94 has 

demonstrated that multitask deep networks are surprisingly robust, and can offer strong improvement 

over random forests. In a multitask network, a set of descriptors is used for model building of multiple 

activities in parallel, yielding multiple outputs (one for each input activity). Within model building all 

weights are shared. 

Karl-Heinz compared Cubist and DNN results from a benchmark of internal prediction models of human 

liver microsome (hLM) stability and hERG inhibition. Application of multitask DNNs gave results superior 

to those for single-task DNNs. Multitask models capitalize on hidden trends. 

 

TensorFlow is an open source software library for high performance numerical computation originally 

developed by Google. It comes with strong support for machine learning and deep learning. Keras is a 

high-level neural networks API, written in Python and capable of running on top of TensorFlow. 

http://www.rulequest.com/cubist-info.html
https://www.tensorflow.org/
https://keras.io/


Karl-Heinz gave a lead optimization example93 concerning diacylglycerol O-acyltransferase 1 (DGAT1) 

inhibitors. 

A lead structure had IC50 = 0.25 µM with metabolic lability = 53%: 

 

A global model for metabolic lability, which is predictive for the chemical series of DGAT1 inhibitors in 

question, was successfully used to guide the lability optimization of the lead structure. A follow-up 

structure:  

 

had IC50 = 0.03 µM, and metabolic lability = 1%, but it had poor permeability. After rescaffolding a 

permeable structure was found with IC50 = 0.04 µM, and low metabolic lability. 

 

Karl-Heinz’s final topic was in silico profiling of compounds and polypharmacology. Sanofi has numerous 

off-target profiling panels for receptors and enzymes, kinases and ion channels, covering important and 

promiscuous antitargets. In total, Sanofi has biological data available for about 3 million compounds 

against about 2,000 biological targets. These data were used for QSAR model generation in order to 

generate profiling models. Data for multiple targets (receptors, protein kinases, and ion channels) are 

retrieved, normalized, and filtered. Genetic algorithms are used for variable selection, in combination 

with Cubist regression trees as machine learning tool. Each in vitro profiling assay has an in silico 

counterpart, but only core panels have a large applicability domain. Forward prediction for external, 



experimental data after model generation has been successful (R2 and Q2 > 0.6) and a web application 

(CT+) for in silico profiling was rolled out. 

Challenges in in silico profiling are the high number of experimental data for model building, and the 

building of reliable and predictive models, including validity domain estimation (VDE). Sanofi builds 

predictive models for about 400 targets of interest. All models are thoroughly validated, including VDE. 

The combination of the predictProfile models with CTlink, developed by Jordi Mestres’ team,95 is very 

powerful in selecting the most attractive hit series out of a high throughput screening run, and in the 

identification of potential side effects of lead series prior to subsequent optimization. Compound 

repurposing as well as polypharmacology of compounds can be addressed by both CTlink and the Sanofi 

models. 

AI “leapfrogs” early off-target predictions and annotations, identification of series-related potential 

issues, prioritization of hit and lead series, and design of preclinical candidates. As Johann-Wolfgang von 

Goethe said “Es ist nicht genug, zu wissen, man muß auch anwenden; es ist nicht genug, zu wollen, man 

muß auch tun”. (“It is not enough to know, you also have to apply; it is not enough to want, you also 

have to do”.) 

Robot Scientists automating drug design 

Ross D. King, of the University of Manchester, United Kingdom, gave a talk 

on the automation of drug design. (The following talk, “Accelerating drug 

discovery through a fully automated design-make-test-analyze workflow”, by 

Michael Kossenjans of AstraZeneca, was unfortunately withdrawn.) Ross said 

that the technology drivers behind his own work were improved computer 

hardware, improved data availability, and improved software (new machine 

learning methods, deep mining, etc.). 

There have been multiple AI hype cycles, but this time it seems different. 

The speed of advance of AI, and especially machine learning, has surprised 

Ross. Machine learning is the core technology of Google, Facebook, Amazon, 

Tencent, Alibaba, Baidu, and many other systems. AI systems have superhuman scientific reasoning 

powers. They flawlessly remember vast numbers of facts; execute flawless logical reasoning, and 

optimal probabilistic reasoning; learn more rationally than humans, from vast amounts of data; extract 

information from millions of scientific papers, and so on. Yet AI systems have to be balanced with 

human abilities. 

Science is a good application area for AI. Scientific problems are abstract, and restricted in scope, which 

suits AI, but also involves the real world. Nature is also honest and not trying to fool us, which also helps 

AI reasoning. Nature is also a worthy object of our study, unlike addictive advertising, and the 

generation of open scientific knowledge is a public good. 

The first application of AI to science was the DENDRAL project in the 1960s and 1970s, the primary aim 

of which was to study hypothesis formation and discovery in science. Using knowledge of chemistry, it 



helped organic chemists to identify unknown organic molecules by analyzing their mass spectra. Meta-

DENDRAL96 was the project’s machine learning system. 

King’s laboratory and collaborators97 have developed “Robot Scientists”: physically implemented robotic 

systems that apply techniques from artificial intelligence to execute cycles of automated scientific 

experimentation. A Robot Scientist can automatically execute cycles of: hypothesis formation, selection 

of efficient experiments to discriminate between hypotheses, execution of experiments using laboratory 

automation equipment, and analysis of results. The motivation for developing Robot Scientists is to 

understand science better, and to make scientific research more efficient. 

Robot Scientists have the potential to increase the productivity of science. They can work more cheaply, 

faster, more accurately, and for a longer time than humans. They can also be easily multiplied. Thus they 

enable the high-throughput testing of hypotheses. They also have the potential to improve the quality of 

science by enabling the description of experiments in greater detail and semantic clarity. 

The Robot Scientist “Eve” was designed to automate and integrate drug screening, hit confirmation, and 

QSAR development. Its combination of novel automation with synthetic biology assays enables faster 

and cheaper drug design.98 Eve’s focus was originally on malaria, and neglected tropical diseases such as 

shistosomiasis, leishmaniasis and Chagas disease. Hundreds of thousands of people die of these 

diseases, and hundreds of millions of people suffer infection. It is clear how to cure such diseases (unlike 

many diseases): kill the parasites. There is also little competition from the pharmaceutical industry. 

Enzymes targeted are dihydrofolate reductase (DHFR), N-myristoyl transferase (NMT), and 

phosphoglycerate kinase (PGK).  

Eve uses graphs and standard cheminformatics methods to represent background knowledge. Eve uses 

induction (QSAR learning) to infer new hypotheses, active learning to decide efficient experiments, and 

an econometric model98 to decide which compounds to test. Eve currently uses processes.98 This has the 

advantages of being generative, and of outputting probabilities. Eve uses active learning to select 

compounds to test its hypotheses. This machine learning method can select its own examples, in this 

case from a set. 

Standard chemical library screening is brute force, but Eve uses intelligent screening. In the standard 

“pipeline”, the processes are not integrated, but in Eve they are automated and integrated: 

 

Eve’s hardware has acoustic liquid handling, high throughput 384-well plates, two industrial robot arms, 

an automated 60x microscope, liquid handlers, fluorescence readers, barcode scanners, a dry store, an 

incubator, a tube decapper, and other items. 



Ross and his co-workers wanted to compare their AI-based screening against the standard brute-force 

approach. While simple to automate, standard screening is slow and wasteful of resources, since every 

compound in the library is tested. It is also unintelligent, as it makes no use of what is learnt during 

screening. To do the comparison, an econometric model was used.98 Factors involved in the calculation 

of the utility of Eve were the number of compounds not assayed by Eve; the cost of the time to screen a 

compound using the mass screening assay; the cost of the loss of a compound in the mass screening 

assay; the number of hits missed by Eve; the cost of the time to screen a compound using a cherry-

picking assay (a confirmation or intelligent assay); the cost of the loss of a compound in a cherry-picking 

assay; the utility of a hit; and the number of compounds assayed by Eve. The researchers demonstrated 

that the use of AI to select compounds economically outperforms standard drug screening. 

Eve has discovered hits and leads against targets in multiple parasites, most notably that triclosan 

inhibits Plasmodium DHFR.98 Triclosan is a simple compound, generally regarded to be safe: it is used in 

toothpaste. It targets both DHFR and fatty acid synthase II (FAS-II), well established targets. Activity has 

been demonstrated using multiple wet experimental techniques. Triclosan works against wild-type and 

drug-resistant Plasmodium falciparum, and Plasmodium vivax. 

The goal of science is to increase our knowledge of the natural world through the performance of 

experiments. This knowledge should be expressed in formal logical languages which promote semantic 

clarity, which in turn supports the free exchange of scientific knowledge, and simplifies scientific 

reasoning. Robot Scientists provide excellent test beds for the development of methodologies for 

formalizing science. Using them it is possible to capture completely, and curate digitally, all aspects of 

the scientific process. The LABoratory Ontology for Robot Scientists (LABORS)99,100 is designed to give the 

scientific community open access to the Robot Scientist experimental data and metadata. 

The effect of AI on intellectual property is an interesting question. U.S. patent law is clear that only 

humans can invent patents. U.K. and European Union patent laws allow non-human inventors. Many 

patents in the United States are possibly invalid as the named inventor is incorrectly named as a human. 

AI-generated copyright works would seem to be in the public domain, except in a few countries such as 

the United Kingdom. Making AI systems legal entities is favored by companies to shield themselves from 

legal liabilities. 

In chess there is a continuum of ability from novices up to grandmasters. Ross argues that this is also 

true in science, from the simple research of Eve, through what most human scientists can achieve, up to 

the ability of a Newton or Einstein. If you accept this, then just as in chess, it is likely that advances in 

computer hardware and software will drive the development of ever smarter Robot Scientists. In favor 

of this argument is the ongoing development of AI and laboratory robotics. 

In response to Gisbert’s request for a grand challenge, Ross said that, in his opinion, the deepest 

challenge in applying AI to science is finding radically new representations. Einstein, for example, 

noticed, in his concept of space-time, that the same physical phenomenon was described in two 

different ways, depending on what was moving. 



Ross believes that the collaboration between humans and Robot Scientists will produce better science 

than either humans or robots can alone. Even though a computer first beat the world chess champion 

over 20 years ago, teams of humans and computers still play better chess than either a human or a 

computer alone. Scientific knowledge will be primarily expressed in logic with associated probabilities, 

and published using the Semantic Web. Improved productivity of science leads to societal benefits: 

better food security, better medicines, etc. 

Data-driven drug discovery and repositioning by machine learning methods 

Yoshihiro Yamanishi of Kyushu Institute of Technology, Japan, spoke about 

drug repositioning. The identification of new indications of drugs, or in-

house compounds, is an efficient strategy for drug development, and it has 

received much attention recently. A great deal of information (e.g., safety, 

pharmacokinetics, and manufacturing process) is available on existing 

drugs. The drug repositioning approach can increase the success rate of 

drug development, and reduce the cost in terms of time, risk, and 

expenditure. Well-known examples are sildenafil (Viagra) developed for 

angina, but now used in the treatment of erectile dysfunction, and 

pulmonary hypertension; and minoxidil (Riup, Rogaine) developed for 

hypertension but now used to treat alopecia. 

In the past, the approach to drug repositioning has been dependent on serendipity. The aim of the 

current work was computational drug repositioning based on biomedical big data (compounds, genes, 

proteins, and diseases). The researchers have developed novel machine learning methods to predict 

new associations between drugs and diseases, based on the molecular understanding of a variety of 

diseases: disease-causing genes, disordered pathways, environmental factors, and abnormal gene 

expression. Characteristic molecular features are often shared among different diseases, and networks 

of disease-disease relationships can be produced based on those molecular features. Yoshihiro and his 

co-workers set out to predict drug-protein-disease networks by machine learning. There are many 

approved drugs (about 60%) whose targets remain unknown. Using the networks, unknown interactions 

can be predicted. The genomic space (of proteins) is inter-related with chemical space in 

chemogenomics, with phenotypic space in phenomics, and with transcript space (drug-induced gene 

expression) in transcriptomics. 

In the chemogenomics approach it is postulated that chemically similar drugs are predicted to interact 

with similar target proteins.101-106 Compound similarity (chemical space) is measured based on 

descriptors for chemical structures, and protein similarity is calculated based on motifs, domains, and 

amino acid sequences. In the chemogenomics approach, Yoshihiro and his co-workers have used the 

generalized Jaccard coefficient for compound similarity, and the normalized Smith-Waterman score for 

protein similarity.107 They investigated the relationship between drug chemical structure, target protein 

sequence, and drug-target network topology. They then developed a new supervised method to infer 

unknown drug-target interactions by integrating chemical space and genomic space into a unified space 

that they call “pharmacological space”. 



 

The supervised method is a two-step process. First, a model is learned to explain the “gold standard”’. 

Second, this model is applied to compounds and proteins absent from the “gold standard” in order to 

infer their interactions.104,108,109 The novel method used is the bipartite graph learning method.104,110 

Details of the kernel-based distance learning algorithm108,110 have been published. 

The performance of the system was evaluated using a benchmark set of 6,769 interactions involving 

1,874 drugs and 436 proteins from the Kyoto Encyclopedia of Genes and Genomes (KEGG), DrugBank, 

and Matador. Performance was superior to that of nearest neighbor and pairwise support vector 

machine (P-SVM) methods:  

 

In the transcriptomics approach, it is postulated that drugs with similar gene expression patterns are 

likely to share common target proteins.107,111-113 Each drug is represented by a gene expression profile in 

which each element is the ratio of drug treatment against control condition (ratio of gene expression 

value after drug treatment to gene expression value before drug treatment). The Library of Integrated 

Cellular Signatures (LINCS) is an NIH program which funds the generation of perturbational profiles 

across multiple cell and perturbation types, as well as read-outs, at a massive scale. The Connectivity 

Map (CMap) is a catalog of gene-expression data collected from human cells treated with chemical 

compounds. The Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System 

AUC = Area under ROC curve 
S. D. = standard deviation 

https://www.genome.jp/kegg/
https://www.drugbank.ca/
http://matador.embl.de/
http://software.broadinstitute.org/software/cprg/?q=node/40
http://software.broadinstitute.org/software/cprg/?q=node/12


(TG_GATEs) is a toxicogenomics database that stores gene expression profiles with chemical treatments. 

Gene expression profiles for 20,220 compounds, 22,277 genes, and 77 cells were analyzed. 

 

Performance evaluation on several benchmark datasets of different chemical diversities proved that the 

transcriptomics approach enables the prediction of target proteins without dependence on prior 

knowledge of chemical structures,107 whereas the prediction accuracy of the chemogenomics approach 

is highly dependent on chemical structure similarities. 

Yoshihiro and his team were able to perform large-scale prediction of new drug indications: from 8,270 

drugs and 1,401 diseases, they predicted 196,048 new drug-disease associations, involving 6,301 drugs 

and 762 diseases. Yoshihiro showed a drug-protein-disease network: 

 

An example of a transcriptomics-based prediction was the predicted indication of prostate cancer for 

phenothiazine, an antipsychotic drug.113 The estimated protein was the androgen receptor (AR). A 

https://toxico.nibiohn.go.jp/english/


similar compound in the learning set was enzalutamide. The predicted inhibitory effect on AR was 

experimentally confirmed.  

phenothiazine

enzalutamide  

Yoshihiro and his co-workers have elucidated pathway activities from differentially regulated genes: 

they performed pathway enrichment analyses of regulated genes to reveal active pathways among 163 

biological pathways.113 They studied the relationship between identified pathways (activated and 

inactivated) and drug efficacy classes. 

They have also worked on repositioning of natural medicines such as herbal medicines, crude drugs, and 

Kampo drugs. Target proteins and target pathways for Kampo drugs have been predicted from 

biomedical data by machine learning.114 Daikentyuto (a Kampo drug for stomach ache) was predicted to 

work for colitis-associated colon cancer, and this was experimentally validated by mice models. 

 



The methods proposed by Yoshihiro can predict potential target proteins, pathway activities, and new 

therapeutic effects of drug candidates, moving from organ-based disease classification to mechanism-

based disease classification. Yoshihiro listed two challenging issues in the integration of cheminformatics 

and bioinformatics. They are computational methods (a) to take into account the biological systems 

(various molecular interaction networks) for target identification and drug screening, and (b) to use 

multilayered omics data for drug discovery in diseasome analysis, patient stratification, biomarker 

detection, target identification, and drug screening. 

Pattern recognition on neuromorphic hardware inspired by the chemical sense 

Michael Schmuker of the University of Hertfordshire, United Kingdom, 

introduced us to “odor space”. The sense of smell plays an important role 

in everyday life, but while we readily understand how to describe visual 

stimuli with light wavelengths and contrast, or sounds with frequency and 

amplitude, we lack understanding of the fundamental features of odors. In 

other words, we do not understand odor space115 the notion of which 

describes different aspects of the sense of smell. There is chemical space, in 

which odorants are arranged along their physicochemical properties. The 

encoding of odors into neuronal responses defines the sensory space. The 

perceptual organization and meaning of odors is the basis for perception space. Finally, odors are 

embedded in a physical space that governs how odorants move from their sources to our noses.  

Michael presented a diagram of the olfactory system from a data processing point of view: 

 

In the encoding stage, olfactory receptors are broadly tuned and their “receptive fields” overlap: a class 

of receptor neurons responds to a wide range of odorants, and an odorant typically triggers responses in 

several different receptor neuron classes. The input space is vast, and large overlapping receptive fields 

ensure coverage. 



In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce the activity of its 

neighbors. Lateral inhibition disables the spreading of action potentials from excited neurons to 

neighboring neurons in the lateral direction. This creates a contrast in stimulation that allows increased 

sensory perception. It occurs primarily in visual processes, but also in tactile, auditory, and olfactory 

processing. Preprocessing through lateral inhibition in the data processing system above acts as a filter 

to enhance the representation of the input data. In this particular setting it counteracts the negative 

aspects of overlapping receptive fields.116-118  

After the sensory input is processed in the antennal lobe (AL) network, projection neurons (PNs) convey 

the sensory code from the AL to higher brain regions. Michael and Gisbert have used a computational 

network model119 of the olfactory system which serves as blueprint for a pattern recognition pipeline. 

They applied this model to predicting the smell of molecules and validated it on bioactivity data for 

druglike compounds, demonstrating that the computational model can be used not only for olfaction, 

but for any data in general.  

The brain remains the ultimate benchmark for energy-efficient pattern recognition. Much of its 

efficiency is attributed to its massively parallel architecture and sparse messaging via action potentials, 

called spikes. The brain’s architecture has long inspired engineers in building computing machines. 

Recently, major chip designers like IBM and Intel, and also academic research teams, have produced 

neuromorphic hardware systems, that is, silicon chips containing a large number of neuron-like small 

computing units, which communicate via short messages with precise timing. The Spikey chip is a 

neuromorphic chip developed at the University of Heidelberg.120 It is a mixed signal system with analog 

neurons and digital routing. It is 10,000 times faster than biology, and supports a wide range of network 

topologies with a few hundreds of neurons. The challenge is to solve real-world computing tasks with 

spiking networks on the hardware system. 

Michael and his colleagues have constructed a spiking neural network for the classification of 

multivariate data. The data are converted into spike trains using “virtual receptors” (VRs). Their output is 

processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs 

are conveniently implemented in software, whereas the lateral inhibition and classification stages run 

on accelerated neuromorphic hardware. When the network had been trained and tested on real-world 

datasets, the classification performance was on a par with a naive Bayes classifier (RK=0.87 with 5-fold 

cross-validation, and 50 repetitions, compared to RK=0.89 for naive Bayes). 

An example is handwritten digit recognition,121,122 using the Modified National Institute of Standards and 

Technology (MNIST) database. The network used by Michael and his colleagues outperformed naive 

Bayes through the preprocessing by lateral inhibition. The neuromorphic advantage is that lateral 

inhibition scales in constant time on hardware, whereas with conventional computers, scaling is with 

input dimensionality. 

Today’s pattern recognition runs on GPUs, performing matrix operations (linear algebra), involving 

dense communication, and very high bandwidth. Energy consumption is high: 300 W per GPU. Modern 

AI systems run on hundreds of GPUs plus hundreds of thousands of CPU cores (see, for example, the 

https://www.kip.uni-heidelberg.de/vision/previous-projects/facets/neuromorphic-hardware/single-chip-system/spikey/
http://yann.lecun.com/exdb/mnist/


OpenAI Five Dota agent). Compare these computers with the brain, which has amazing pattern 

recognition, reasoning, and control capabilities; massively parallel computation with lightweight 

compute units; and sparse communication via timed events (i.e., action potentials). Moreover the 

brain’s entire energy consumption is only 20 watts. 

GPU-based AI is incredibly powerful, but also incredibly power-hungry. Moore’s law is to be abandoned, 

and alternative architectures are on the rise. Neuromorphic computing is event-based computing, and is 

power efficient. Big companies have launched neuromorphic chips: take, for example, IBM TrueNorth 

and Intel Loihi. Academic projects include SpiNNaker122 at the University of Manchester, and BrainScaleS 

at the University of Heidelberg, both of them involved in the Human Brain Project. 

SpiNNaker is a specialized, many-core system, with an ARM-based architecture. It consumes low power, 

is portable, and connects through a 100 Mbit Ethernet. Spikey is a mixed-signal system with analog 

neurons and digital routing (see above). It is low power, and portable, and has a USB 2 connection. GPU-

enhanced Neuronal Network (GeNN) is a meta-compiler that generates optimized CUDA-kernels for 

spiking networks. GeNN compiles networks for accelerated execution on GPUs, which are high power, 

not portable, and connect by PCIExpress. On all neuromorphic platforms, the workstation controlling the 

hardware consumes the largest fraction of the power. For network simulation, a GPU is more efficient 

than a CPU for large networks; for small networks, the CPU simulation is the more efficient. SpiNNaker 

uses less power than a GPU. Moreover, power requirements are invariant to network size (up to the 

maximum size supported), which gives it an edge in power efficiency over both CPUs and CPUs.122 

Michael’s next topic was the physical component of odor space. In an open sampling system, where the 

chemosensory elements are directly exposed to the environment being monitored, the identification 

and monitoring of chemical substances presents a challenge due to the dispersion mechanisms of 

gaseous chemical analytes, namely diffusion, turbulence, and advection. Vergara et al.123 examined 

electronic nose sensors in a turbulent wind tunnel. The sensors were at varying distance from the odor 

source. The authors made publicly available 18,000, 72-dimensional time-series recordings. The 

concentration of a gas decreases with distance from source, but in order to predict distance, the 

concentration at the source must be known. In a turbulent environment, gas intermittency also depends 

on source distance. Michael and his co-workers aimed to use spatiotemporal features of gas plumes for 

distance estimation, using Vergara’s dataset. 

They have demonstrated124 that by appropriate signal processing, off-the-shelf metal-oxide sensors are 

capable of extracting rapidly fluctuating features of gas plumes that strongly correlate with source 

distance. They showed that with a straightforward analysis method it is possible to decode events of 

large, consistent changes in the measured signal, so-called “bouts”. The frequency of these bouts 

predicts the distance of a gas source in wind-tunnel experiments with good accuracy. In addition, they 

found that the variance of bout counts indicates cross-wind offset to the centerline of the gas plume. 

The results offer an alternative approach to estimating gas source proximity that is largely independent 

of gas concentration. The analysis method employed demands very few computational resources, and is 

suitable for low-power microcontrollers. 

https://blog.openai.com/openai-five/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
https://brainscales.kip.uni-heidelberg.de/
https://www.humanbrainproject.eu/en/


While neuromorphic hardware generally delivers on the promise of energy efficiency, the challenge is to 

develop algorithms that harness the full potential of these chips. A natural choice for inspiration was the 

neural circuits that perform sensory computation in the brain. Of these, the olfactory system stands out 

for its capability to rapidly extract information from its extremely high-dimensional input that is 

chemical space. Based on previous work on olfactory sensory computation, Michael and his colleagues 

have used the computational architecture of the olfactory system as a template for a neuromorphic 

pattern recognition. They implemented this algorithm on several accelerated hardware platforms, and 

assessed recognition performance and power efficiency. Their work pioneers use cases for high-

dimensional pattern recognition on neuromorphic architectures. The results highlight the energy-

efficiency of neuromorphic hardware, and suggest a use in mobile and embedded platforms. 

Rethinking molecular design 

Gisbert Schneider concluded the symposium with the award address to 

which he gave the full title “Rethinking molecular design (…with artificial 

intelligence)”. Medicinal chemists need to know “what to make next”, but 

drug designers have to face the challenges of nonlinearity, errors, and 

incompleteness. The problem is difficult because the scientist is dealing 

with an adaptive, dynamic organism, but we can go from serendipity, 

narratives, and “gut feeling” to causality−driven engineering.125 

Algorithms for generating, scoring, and optimizing molecular structure are 

known as de novo drug design.126 “De novo”, meaning “from the 

beginning” or “from scratch” is a misnomer since you cannot begin from 

scratch: you have to input something. But “novo” might also be correctly interpreted as “new”, “novel”, 

or “latest”. 

In the midst of the fourth industrial revolution, there is much excitement about the potential of artificial 

intelligence (AI) to further pharmaceutical research.127 Essentially, an intelligent agent, human or 

machine, demonstrates an ability to solve problems, to learn from experience, and to deal with new 

situations. With regard to these three central criteria, certain machine learning modalities for de novo 

molecular design may be considered instances of AI. 

Small-molecule drug discovery can be viewed as a challenging multidimensional problem in which 

various characteristics of compounds, including efficacy, pharmacokinetics and safety, need to be 

optimized in parallel to provide drug candidates. Recent advances in areas such as microfluidics-assisted 

chemical synthesis and biological testing, as well as AI systems that improve a design hypothesis through 

feedback analysis are now providing a basis for the introduction of greater automation into aspects of 

this process. This could potentially accelerate time frames for compound discovery and optimization and 

enable more effective searches of chemical space.128 

In this context, the umbrella term “constructive learning” describes an entire class of problem–solving 

techniques, including generative deep networks, for which the ultimate learning goal is not necessarily 

to find the optimal model for the training data but rather to identify new instances (molecules) from 

within the applicability domain of the model which are likely to exhibit the desired properties. Several 



such systems have been designed, and developed to rationalize and articulate next steps in compound 

selection, synthesis, and testing. 

The first automated ligand-based de novo design program was the TOPology-Assigning System (TOPAS). 

An evolutionary algorithm was developed for fragment-based de novo design of molecules.129 This 

stochastic method aims at generating a novel molecular structure mimicking a template structure. A set 

of about 25,000 fragment structures serves as the building block supply. The fragments were obtained 

by a straightforward fragmentation procedure, applied to 36,000 known drugs. A strategy very similar to 

the Retrosynthetic Combinatorial Analysis Procedure, RECAP, developed by Hann and co-workers130 was 

applied. At the time, only 11 reaction schemes were implemented for both fragmentation and building 

block assembly. This combination of drug-derived building blocks and a restricted set of reaction 

schemes proved to be a key for the automatic development of novel, synthetically tractable structures. 

In a cyclic optimization process, molecule architectures were generated from a parent structure by 

virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent 

TOPAS cycle. Similarity measures were used to define fitness, based on 2D-structural similarity or 

topological pharmacophore distance between the template molecule and the variants. 

First experimental proof131 of the TOPAS concept was demonstrated by the successful de novo design of 

a new structural class of potent potassium channel inhibitors. Gisbert and his co-workers selected a 

known potent potassium channel blocking agent as the template molecule. Two molecules were 

synthesized based on the original design recommended by TOPAS. Electrophysiological measurement 

proved potassium channel blocking activity for both. 

 

At that time, Gisbert coined the term “scaffold hopping” for the identification of isofunctional molecule 

structures with significantly different molecular backbones.132 

Gisbert’s software called Design of Genuine Structures (DOGS)133,134 features a further advanced ligand-

based strategy for automated in silico assembly of potentially novel bioactive compounds. The quality of 

the designed compounds is assessed by a graph kernel method measuring their similarity to known 

bioactive reference ligands in terms of structural and pharmacophoric features. A deterministic 

compound construction procedure was implemented that explicitly considers compound 

synthesizability, based on a compilation of 25,144 readily available synthetic building blocks (from 

Sigma-Aldrich) and 58 established reaction principles, encoded as SMILES. This enables the software to 

suggest a synthesis route for each designed compound. DOGS performs ligand growing by reaction 

forecasting. Pseudo-reaction products are formed from a starting fragment, the most promising pseudo-

reaction product is selected and full enumeration then takes place with the selected reaction scheme. 



This controls the combinatorial explosion that would result from full enumeration of all 58 reactions 

with over 25,000 building blocks. 

The design of a fragment-like inhibitor of death-associated protein kinase 3 (DAPK3)135 was one of many 

successful applications of DOGS. The starting point was the DAPK3 inhibitor Fasudil. After 521 designs 

and predicted targets, the fourth-ranked selected design was chosen. (The top three looked less 

innovative.)

 

A new crystal structure (PDB 5A6N) of the inactive DAPK3 homodimer showed the fragment-like hit 

bound to the ATP pocket. Azosemide is an approved diuretic in Japan and it contains the designed 

structural framework. The researchers acquired a sample, tested it, and found an IC50 of 2 μM. Target 

prediction software based on machine learning models correctly identified additional macromolecular 

targets of the computationally designed compound, and of azosemide. 

In work done in collaboration with Novartis,136 Gisbert’s team has applied ant colony optimization to 

combinatorial building block selection. By relying on publicly available structure-activity data, the 

researchers developed a predictive quantitative polypharmacology model for 640 human drug targets. 

By taking reductive amination as an example of a privileged reaction, they obtained novel subtype-

selective and multitarget-modulating serotonin receptor antagonists, as well as ligands selective for the 

sigma-1 receptor, with accurately predicted affinities. Automated flow synthesis with inline analytics 

was carried out with reaction chips on the bench. The nanomolar potencies of the hits obtained, their 

high ligand efficiencies, and an overall success rate of up to 90 % demonstrate that this ligand-based 

computer-aided molecular design method may guide target-focused combinatorial chemistry. The 

results of this work with Novartis136,137 suggest that seamless amalgamation of computational activity 

prediction and molecular design with microfluidics-assisted synthesis enables the swift generation of 

small molecules with the desired polypharmacology. 

Gisbert and co-workers have also reported the computational de novo design of synthetically accessible 

chemical entities that mimic the complex sesquiterpene natural product (-)-Englerin A.138 This natural 

product kills kidney cancer cells, but it is toxic. It also requires a 14-step synthesis,139 and the target was 

(LE = Ligand efficiency) 

Azosemide 

IC50 = 52 μM, LE = 0.40 



unknown. Gisbert’s team synthesized lead-like probes from commercially available building blocks and 

profiled them for activity against a computationally predicted panel of macromolecular targets. Both the 

design template (-)-Englerin A and its low-molecular weight mimetics presented nanomolar binding 

affinities, and antagonized the transient receptor potential calcium channel (TRPM8) in a cell-based 

assay, without showing target promiscuity or frequent-hitter properties. (Incidentally, Gisbert credits his 

wife and co-worker Petra with the actual invention140 of the term “frequent hitter”.) DOGS suggested a 

three-stage synthesis. 

 

Very recently Gisbert’s team has reported a method for de novo design that uses generative recurrent 

neural networks (RNN) containing long short‐term memory (LSTM) cells.141,142 This computational model 

captured the syntax of molecular representation in terms of SMILES strings with close to perfect 

accuracy. The SMILES strings were from compounds in ChEMBL with nanomolar activity. The learned 

pattern probabilities can be used for de novo SMILES generation by fragment growing. This molecular 

design concept eliminates the need for virtual compound library enumeration. By employing transfer 

learning, the researchers fine‐tuned the RNN′s predictions for specific molecular targets. This approach 

enables virtual compound design without requiring secondary or external activity prediction, which 

could introduce error or unwanted bias. The results obtained advocate this generative RNN‐LSTM 

system for high‐impact use cases, such as low‐data drug discovery, fragment-based molecular design, 

and hit‐to‐lead optimization for diverse drug targets. 

By transfer learning, the general RNN model was fine‐tuned on recognizing retinoid X and peroxisome 

proliferator‐activated receptor (PPAR) agonists.142 Five top‐ranking compounds designed by the 

generative model were synthesized. Four of the compounds revealed nanomolar to low‐micromolar 

receptor modulatory activity in cell‐based assays. Apparently, the computational model intrinsically 

captured relevant chemical and biological knowledge without the need for explicit rules. 

In another example (unpublished work) a first-in-class C-X-C chemokine receptor type 4 (CXCR4) agonist 

was designed by transfer learning from CXCR modulators in the literature. They were ranked by 

pharmacophore similarity according to chemically advanced template search (CATS) topological 

pharmacophores.143 A one-stage synthesis was proposed an successfully implemented. 

Scaffold hopping by automated computational de novo design works. De novo structure generation and 

optimization is almost a solved problem: new structures can be generated by explicit or implicit 

knowledge-based systems. Most of the designs are readily synthesizable. Nevertheless, many more 



applications are needed to assess the method. Scoring remains inherently difficult: a review on the 

“edge of chaos” discusses this.125 Deep learning systems, and generative models, build on implicit 

medicinal-chemical knowledge. This mix of “mind and machine” will inspire and change drug design.128 

Conclusion 

Erin Davis, chair of the ACS Division of Chemical Information, formally presented the Herman Skolnik 

Award to Gisbert Schneider at the end of the symposium. 
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